Solving symmetric cubic equations

Symmetric equations of the 3 degree have the form: ax3 + bx2 + bx + a = 0, a ≠ 0.
The polynomial on the left side of such equations can always be factorized as follows:
ax3 + bx2 + bx + a = a(x3 + 1) + bx(x + 1) =
= a(x + 1)(x2 - x + 1) + bx(x + 1) = (x + 1)(ax2 + (b - a)x + a).
Therefore, the original equation is equivalent to a set of equations:

Разложение на множители симметрических уравнений 3 степени
Thus, the solution of the original equation is always the number -1, and the remaining roots are the roots of the quadratic equation ax2 + (b - a)x + a = 0.
Let's consider the solution of symmetric equations of degree 3 using examples.

Examples of solving symmetric cubic equations


Example 1.
Solve the equation 2x3 - 5x2 - 5x + 2 = 0.
Решение.
Factorize the left side of the original equation:
2x3 - 5x2 - 5x + 2 = 2(x + 1)(x2 - x + 1) - 5x(x + 1) = (x + 1)(2x2 - 2x + 2 - 5x) = (x + 1)(2x2 - 7x + 2).
So, the original equation is equivalent to the set

Solving symmetric cubic equations
the first equation of the set has a root of -1, the second equation is solved using the formulas for the roots of a quadratic equation:
Solving symmetric cubic equations
Answer: Solving symmetric cubic equations
Example 2.
Solve the equation x3 + 2x2 + 2x + 1 = 0.
Solution.
x3 + 2x2 + 2x + 1 = (x + 1)(x2 - x + 1) + 2x(x + 1) = (x + 1)(x2 - x + 1 + 2x) = (x + 1)(x2 + x + 1). So, the original equation is equivalent to the set

Solving symmetric cubic equations
The first equation of the set has a root of -1, the second equation has no roots, since the discriminant D = 1 - 4 = -3  <  0.
Answer: -1.

JustNoteIt - Note taking solution for professionals
Related Sites & Topics:
Friday, December 27, 2024
Contact
Privacy Policy
Terms & Conditions

Copyright © 2024 Intemodino Group s.r.o.
All rights reserved
Menu