Only two factories produce lamps of a certain type.

Among the products of the first factory, 2% lamps are defective lamps, among the products of the second - 3%.

It is known that with a randomly selected lamp, the probability of buying a bad lamp of this type is 0.024.

Find the probability that a randomly selected lamp was produced in the first factory.

Let P be the probability that the lamp was made by the first factory.

Then the probability that the lamp is made in the second factory is 1- P.

The probability the lamp is made in the first factory and at the same time is defective equals to 0.02 × P.

Similarly, the probability that the lamp is made in the second factory and at the same time is bad is 0.03 × (1- P).

Since the probability of buying a faulty lamp is 0.024, according to the formula for adding probabilities, we get the equation:

0.02 × P + 0.03 × (1 - P) = 0.024

Solving this linear equation, we could find: P = 0.6

Next probability problem solution: Calculate probability coffee remains in both machines, by the end of the day.

Copyright © 2024 Intemodino Group s.r.o.

All rights reserved

All rights reserved